4.2 Projections and Planes

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular lines is fundamental. As an illustration, suppose a point P and a plane are given and it is desired to find the point Q that lies in the plane and is closest to P, as shown in Figure 4.2.1. Clearly, what is required is to find the line through P that is perpendicular to the plane and then to obtain Q as the point of intersection of this line with the plane. Finding the line *perpendicular* to the plane requires a way to determine when two vectors are perpendicular. This can be done using the idea of the dot product of two vectors.

The Dot Product and Angles

Definition 4.4 Dot F	Product in \mathbb{R}^3					
Given vectors $\mathbf{v} = \begin{bmatrix} & & \\ & & &$	$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} and \mathbf{w} =$	$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, their dot product $\mathbf{v} \cdot \mathbf{w}$ is a number defined			
$\mathbf{v} \cdot \mathbf{w} = x_1 x_2 + y_1 y_2 + z_1 z_2 = \mathbf{v}^T \mathbf{w}$						

Because $\mathbf{v} \cdot \mathbf{w}$ is a number, it is sometimes called the scalar product of \mathbf{v} and \mathbf{w} .¹¹

Example 4.2.1
If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$, then $\mathbf{v} \cdot \mathbf{w} = 2 \cdot 1 + (-1) \cdot 4 + 3 \cdot (-1) = -5$.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1

Let **u**, **v**, and **w** denote vectors in \mathbb{R}^3 (or \mathbb{R}^2).

- 1. $\mathbf{v} \cdot \mathbf{w}$ is a real number.
- 2. $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$.
- 3. $\mathbf{v} \cdot \mathbf{0} = \mathbf{0} = \mathbf{0} \cdot \mathbf{v}$.

$$4. \quad \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2.$$

¹¹Similarly, if $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ in \mathbb{R}^2 , then $\mathbf{v} \cdot \mathbf{w} = x_1 x_2 + y_1 y_2$.

5. (kv) ⋅ w = k(w ⋅ v) = v ⋅ (kw) for all scalars k.
6. u ⋅ (v±w) = u ⋅ v±u ⋅ w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are properties of matrix arithmetic (because $\mathbf{w} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{w}$), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

 $3\mathbf{u} \cdot (2\mathbf{v} - 3\mathbf{w} + 4\mathbf{z}) = 6(\mathbf{u} \cdot \mathbf{v}) - 9(\mathbf{u} \cdot \mathbf{w}) + 12(\mathbf{u} \cdot \mathbf{z})$

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that $\|\mathbf{v} - 3\mathbf{w}\|^2 = 1$ when $\|\mathbf{v}\| = 2$, $\|\mathbf{w}\| = 1$, and $\mathbf{v} \cdot \mathbf{w} = 2$.

Solution. We apply Theorem 4.2.1 several times:

$$\|\mathbf{v} - 3\mathbf{w}\|^2 = (\mathbf{v} - 3\mathbf{w}) \cdot (\mathbf{v} - 3\mathbf{w})$$

= $\mathbf{v} \cdot (\mathbf{v} - 3\mathbf{w}) - 3\mathbf{w} \cdot (\mathbf{v} - 3\mathbf{w})$
= $\mathbf{v} \cdot \mathbf{v} - 3(\mathbf{v} \cdot \mathbf{w}) - 3(\mathbf{w} \cdot \mathbf{v}) + 9(\mathbf{w} \cdot \mathbf{w})$
= $\|\mathbf{v}\|^2 - 6(\mathbf{v} \cdot \mathbf{w}) + 9\|\mathbf{w}\|^2$
= $4 - 12 + 9 = 1$

There is an intrinsic description of the dot product of two nonzero vectors in \mathbb{R}^3 . To understand it we require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

<u>Proof.</u> We prove it when is θ acute, that is $0 \le \theta < \frac{\pi}{2}$; the obtuse case is similar. In Figure 4.2.2 we have $p = a \sin \theta$ and $q = a \cos \theta$. Hence Pythagoras' theorem gives

$$c^{2} = p^{2} + (b-q)^{2} = a^{2} \sin^{2} \theta + (b-a\cos\theta)^{2}$$
$$= a^{2} (\sin^{2} \theta + \cos^{2} \theta) + b^{2} - 2ab\cos\theta$$

Figure 4.2.2

The law of cosines follows because $\sin^2 \theta + \cos^2 \theta = 1$ for any angle θ .

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras' theorem if θ is a right angle (because $\cos \frac{\pi}{2} = 0$).

Now let **v** and **w** be nonzero vectors positioned with a common tail as in Figure 4.2.3. Then they determine a unique angle θ in the range

$$0 \le \theta \le \pi$$

This angle θ will be called the **angle between v** and **w**. Figure 4.2.3 illustrates when θ is acute (less than $\frac{\pi}{2}$) and obtuse (greater than $\frac{\pi}{2}$). Clearly **v** and **w** are parallel if θ is either 0 or π . Note that we do not define the angle between **v** and **w** if one of these vectors is **0**.

The next result gives an easy way to compute the angle between two nonzero vectors using the dot product.

Theorem 4.2.2

Let v and w be nonzero vectors. If θ is the angle between v and w, then

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

<u>Proof.</u> We calculate $\|\mathbf{v} - \mathbf{w}\|^2$ in two ways. First apply the law of cosines to the triangle in Figure 4.2.4 to obtain:

$$\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta$$

Figure 4.2.4

On the other hand, we use Theorem 4.2.1:

$$\|\mathbf{v} - \mathbf{w}\|^{2} = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})$$

= $\mathbf{v} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w}$
= $\|\mathbf{v}\|^{2} - 2(\mathbf{v} \cdot \mathbf{w}) + \|\mathbf{w}\|^{2}$

Comparing these we see that $-2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta = -2(\mathbf{v}\cdot\mathbf{w})$, and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of $\mathbf{v} \cdot \mathbf{w}$ because $\|\mathbf{v}\|$, $\|\mathbf{w}\|$, and the angle θ between v and w do not depend on the choice of coordinate system. Moreover, since $\|\mathbf{v}\|$ and $\|\mathbf{w}\|$ are nonzero (v and w are nonzero vectors), it gives a formula for the cosine of the angle θ :

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \tag{4.1}$$

Since $0 \le \theta \le \pi$, this can be used to find θ .

Example 4.2.3

Compute the angle between $\mathbf{u} =$	$\left[\begin{array}{c} -1\\ 1\\ 2 \end{array}\right] \text{ and } \mathbf{v} =$	$= \begin{bmatrix} 2\\1\\-1 \end{bmatrix}.$
--	--	---

Solution. Compute $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{-2+1-2}{\sqrt{6}\sqrt{6}} = -\frac{1}{2}$. Now recall that $\cos \theta$ and $\sin \theta$ are defined so that $(\cos \theta, \sin \theta)$ is the point on the unit circle determined by the angle θ (drawn counterclockwise, starting from the positive *x* axis). In the present case, we know that $\cos \theta = -\frac{1}{2}$ and that $0 \le \theta \le \pi$. Because $\cos \frac{\pi}{3} = \frac{1}{2}$, it follows that $\theta = \frac{2\pi}{3}$ (see the diagram).

If v and w are nonzero, equation (4.1) shows that $\cos \theta$ has the same sign as v · w, so

 $\begin{aligned} \mathbf{v} \cdot \mathbf{w} &> 0 & \text{if and only if} \quad \theta \text{ is acute } (0 \leq \theta < \frac{\pi}{2}) \\ \mathbf{v} \cdot \mathbf{w} &< 0 & \text{if and only if} \quad \theta \text{ is obtuse } (\frac{\pi}{2} < \theta \leq 0) \\ \mathbf{v} \cdot \mathbf{w} &= 0 & \text{if and only if} \quad \theta = \frac{\pi}{2} \end{aligned}$

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in linear algebra:

Definition 4.5 Orthogonal Vectors in \mathbb{R}^3

Two vectors v and w are said to be **orthogonal** if v = 0 or w = 0 or the angle between them is $\frac{\pi}{2}$.

Since $\mathbf{v} \cdot \mathbf{w} = 0$ if either $\mathbf{v} = \mathbf{0}$ or $\mathbf{w} = \mathbf{0}$, we have the following theorem:

Theorem 4.2.3

Two vectors **v** and **w** are orthogonal if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

Example 4.2.4

Show that the points P(3, -1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution. The vectors along the sides of the triangle are

$$\overrightarrow{PQ} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \overrightarrow{PR} = \begin{bmatrix} 3\\1\\3 \end{bmatrix}, \ \text{and} \ \overrightarrow{QR} = \begin{bmatrix} 2\\-1\\0 \end{bmatrix}$$

Evidently $\overrightarrow{PQ} \cdot \overrightarrow{QR} = 2 - 2 + 0 = 0$, so \overrightarrow{PQ} and \overrightarrow{QR} are orthogonal vectors. This means sides PQ and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems involving perpendicular lines.

Example 4.2.5

 $\mathbf{u} - \mathbf{v}$

v

A parallelogram with sides of equal length is called a **rhombus**. Show that the diagonals of a rhombus are perpendicular.

 $(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) - \mathbf{v} \cdot (\mathbf{u} + \mathbf{v})$ $= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v}$ $= \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2$ = 0

because $\|\mathbf{u}\| = \|\mathbf{v}\|$ (it is a rhombus). Hence $\mathbf{u} - \mathbf{v}$ and $\mathbf{u} + \mathbf{v}$ are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal vectors. Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30° to the horizontal as in the diagram. Neglecting friction, how much force is required to keep the block from sliding down the surface?

<u>Solution</u>. Let w denote the weight (force due to gravity) exerted on the block. Then ||w|| = 10 kilograms and the direction of w is vertically down as in the diagram. The idea is to write w as a sum $w = w_1 + w_2$ where w_1 is parallel to the inclined surface and w_2 is perpendicular to the surface. Since there is no friction, the force required is $-w_1$ because the force w_2 has no effect parallel to the

surface. As the angle between **w** and **w**₂ is 30° in the diagram, we have $\frac{\|\mathbf{w}_1\|}{\|\mathbf{w}\|} = \sin 30^\circ = \frac{1}{2}$. Hence $\|\mathbf{w}_1\| = \frac{1}{2}\|\mathbf{w}\| = \frac{1}{2}10 = 5$. Thus the required force has a magnitude of 5 kilograms weight directed up the surface.

If a nonzero vector \mathbf{d} is specified, the key idea in Example 4.2.6 is to be able to write an arbitrary vector \mathbf{u} as a sum of two vectors,

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$$

where \mathbf{u}_1 is parallel to \mathbf{d} and $\mathbf{u}_2 = \mathbf{u} - \mathbf{u}_1$ is orthogonal to \mathbf{d} . Suppose that \mathbf{u} and $\mathbf{d} \neq \mathbf{0}$ emanate from a common tail Q (see Figure 4.2.5). Let P be the tip of \mathbf{u} , and let P_1 denote the foot of the perpendicular from P to the line through Q parallel to \mathbf{d} .

Then $\mathbf{u}_1 = \overrightarrow{QP}_1$ has the required properties:

1. \mathbf{u}_1 is parallel to \mathbf{d} .

2. $\mathbf{u}_2 = \mathbf{u} - \mathbf{u}_1$ is orthogonal to **d**.

3.
$$u = u_1 + u_2$$
.

Definition 4.6 Projection in
$$\mathbb{R}^3$$

The vector $\mathbf{u}_1 = \overrightarrow{QP}_1$ in Figure 4.2.5 is called **the projection** of \mathbf{u} on \mathbf{d} . It is denoted

 $\boldsymbol{u}_1 = \operatorname{proj}_{\boldsymbol{d}} \boldsymbol{u}$

In Figure 4.2.5(a) the vector $\mathbf{u}_1 = \text{proj}_{\mathbf{d}} \mathbf{u}$ has the same direction as \mathbf{d} ; however, \mathbf{u}_1 and \mathbf{d} have opposite directions if the angle between \mathbf{u} and \mathbf{d} is greater than $\frac{\pi}{2}$ (Figure 4.2.5(b)). Note that the projection $\mathbf{u}_1 = \text{proj}_{\mathbf{d}} \mathbf{u}$ is zero if and only if \mathbf{u} and \mathbf{d} are orthogonal.

Calculating the projection of **u** on $\mathbf{d} \neq \mathbf{0}$ is remarkably easy.

Theorem 4.2.4

Let **u** and $d \neq 0$ be vectors.

- 1. The projection of **u** on **d** is given by $\operatorname{proj}_{\mathbf{d}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d}$.
- 2. The vector $\mathbf{u} \operatorname{proj}_{\mathbf{d}} \mathbf{u}$ is orthogonal to \mathbf{d} .

<u>Proof.</u> The vector $\mathbf{u}_1 = \text{proj}_{\mathbf{d}} \mathbf{u}$ is parallel to \mathbf{d} and so has the form $\mathbf{u}_1 = t\mathbf{d}$ for some scalar t. The requirement that $\mathbf{u} - \mathbf{u}_1$ and \mathbf{d} are orthogonal determines t. In fact, it means that $(\mathbf{u} - \mathbf{u}_1) \cdot \mathbf{d} = 0$ by Theorem 4.2.3. If $\mathbf{u}_1 = t\mathbf{d}$ is substituted here, the condition is

$$0 = (\mathbf{u} - t\mathbf{d}) \cdot \mathbf{d} = \mathbf{u} \cdot \mathbf{d} - t(\mathbf{d} \cdot \mathbf{d}) = \mathbf{u} \cdot \mathbf{d} - t \|\mathbf{d}\|^2$$

It follows that $t = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2}$, where the assumption that $\mathbf{d} \neq \mathbf{0}$ guarantees that $\|\mathbf{d}\|^2 \neq 0$.

232 Vector Geometry

Example 4.2.7

Find the projection of $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ on $\mathbf{d} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and express $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ where \mathbf{u}_1 is parallel to \mathbf{d} and \mathbf{u}_2 is orthogonal to \mathbf{d} .

Solution. The projection \mathbf{u}_1 of \mathbf{u} on \mathbf{d} is

$$\mathbf{u}_{1} = \operatorname{proj}_{\mathbf{d}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^{2}} \mathbf{d} = \frac{2+3+3}{1^{2}+(-1)^{2}+3^{2}} \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} = \frac{8}{11} \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix}$$

Hence $\mathbf{u}_2 = \mathbf{u} - \mathbf{u}_1 = \frac{1}{11} \begin{bmatrix} 14\\ -25\\ -13 \end{bmatrix}$, and this is orthogonal to **d** by Theorem 4.2.4 (alternatively, observe that $\mathbf{d} \cdot \mathbf{u}_2 = 0$). Since $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, we are done.

Example 4.2.8

Find the shortest distance (see diagram) from the point P(1, 3, -2) $\mathbf{u} = \mathbf{u} + \mathbf{u} +$

by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the distance is

$$\|\overrightarrow{QP}\| = \|\mathbf{u} - \mathbf{u}_1\| = \left\| \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\| = \sqrt{3}$$

To find the coordinates of Q, let \mathbf{p}_0 and \mathbf{q} denote the vectors of P_0 and Q, respectively. Then $\mathbf{p}_0 = \begin{bmatrix} 2\\0\\-1 \end{bmatrix}$ and $\mathbf{q} = \mathbf{p}_0 + \mathbf{u}_1 = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}$. Hence Q(0, 2, -1) is the required point. It can be checked that the distance from Q to P is $\sqrt{3}$, as expected.

Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there is exactly one containing any given point. This fact can be used to give a very simple description of a plane. To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane

A nonzero vector **n** is called a **normal** for a plane if it is orthogonal to every vector in the plane.

For example, the coordinate vector \mathbf{k} is a normal for the *x*-*y* plane.

Given a point $P_0 = P_0(x_0, y_0, z_0)$ and a nonzero vector **n**, there is a unique plane through P_0 with normal **n**, shaded in Figure 4.2.6. A point P = P(x, y, z) lies on this plane if and only if the vector $\overrightarrow{P_0P}$ is orthogonal to **n**—that is, if and only if $\mathbf{n} \cdot \overrightarrow{P_0P} = 0$. Because $\overrightarrow{P_0P} = \begin{bmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{bmatrix}$ this gives the following result:

Scalar Equation of a Plane

The plane through $P_0(x_0, y_0, z_0)$ with normal $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \neq \mathbf{0}$ as a normal vector is given by $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

Example 4.2.9

Find an equation of the plane through $P_0(1, -1, 3)$ with $\mathbf{n} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ as normal.

Solution. Here the general scalar equation becomes

$$3(x-1) - (y+1) + 2(z-3) = 0$$

This simplifies to 3x - y + 2z = 10.

If we write $d = ax_0 + by_0 + cz_0$, the scalar equation shows that every plane with normal $\mathbf{n} = \begin{bmatrix} b \\ b \end{bmatrix}$ has

234 Vector Geometry

a linear equation of the form

$$ax + by + cz = d \tag{4.2}$$

for some constant *d*. Conversely, the graph of this equation is a plane with $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ as a normal vector (assuming that *a*, *b*, and *c* are not all zero).

Example 4.2.10

Find an equation of the plane through $P_0(3, -1, 2)$ that is parallel to the plane with equation 2x - 3y = 6.

Solution. The plane with equation 2x - 3y = 6 has normal $\mathbf{n} = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$. Because the two planes are parallel, \mathbf{n} serves as a normal for the plane we seek, so the equation is 2x - 3y = d for some d by Equation 4.2. Insisting that $P_0(3, -1, 2)$ lies on the plane determines d; that is, $d = 2 \cdot 3 - 3(-1) = 9$. Hence, the equation is 2x - 3y = 9.

Consider points $P_0(x_0, y_0, z_0)$ and P(x, y, z) with vectors $\mathbf{p}_0 = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$ and $\mathbf{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Given a nonzero vector \mathbf{n} , the scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ takes the vector form:

form:

Vector Equation of a Plane

The plane with normal $\mathbf{n} \neq \mathbf{0}$ through the point with vector \mathbf{p}_0 is given by

 $\boldsymbol{n} \cdot (\boldsymbol{p} - \boldsymbol{p}_0) = 0$

In other words, the point with vector **p** is on the plane if and only if **p** satisfies this condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal **n** has vector equation $\mathbf{n} \cdot \mathbf{p} = d$ for some number *d*.

This is useful in the second solution of Example 4.2.11.

Example 4.2.11

Find the shortest distance from the point P(2, 1, -3) to the plane with equation 3x - y + 4z = 1. Also find the point Q on this plane closest to P.

This gives $t = \frac{8}{26} = \frac{4}{13}$, so

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{q} = \mathbf{p} + t\mathbf{n} = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} + \frac{4}{13} \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} + \frac{1}{13} \begin{bmatrix} 38 \\ 9 \\ -23 \end{bmatrix}$$

as before. This determines Q (in the diagram), and the reader can verify that the required distance is $\|\overrightarrow{QP}\| = \frac{4}{13}\sqrt{26}$, as before.

The Cross Product

If *P*, *Q*, and *R* are three distinct points in \mathbb{R}^3 that are not all on some line, it is clear geometrically that there is a unique plane containing all three. The vectors \overrightarrow{PQ} and \overrightarrow{PR} both lie in this plane, so finding a normal amounts to finding a nonzero vector orthogonal to both \overrightarrow{PQ} and \overrightarrow{PR} . The cross product provides a systematic way to do this.

Definition 4.8 Cross Product

Given vectors $\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, define the cross product $\mathbf{v}_1 \times \mathbf{v}_2$ by						
$\mathbf{v}_1 \times \mathbf{v}_2 = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$						

(Because it is a vector, $\mathbf{v}_1 \times \mathbf{v}_2$ is often called the **vector product**.) There is an easy way to remember this definition using the **coordinate vectors**:

$$\mathbf{i} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \text{and} \ \mathbf{k} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

They are vectors of length 1 pointing along the positive x, y, and z axes, respectively, as in Figure 4.2.7. The reason for the name is that any vector can be written as

Figure 4.2.7

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

With this, the cross product can be described as follows:

Determinant Form of the Cross Product If $\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ are two vectors, then $\mathbf{v}_1 \times \mathbf{v}_2 = \det \begin{bmatrix} \mathbf{i} & x_1 & x_2 \\ \mathbf{j} & y_1 & y_2 \\ \mathbf{k} & z_1 & z_2 \end{bmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \mathbf{k}$ where the determinant is expanded along the first column. **Example 4.2.12**

If
$$\mathbf{v} = \begin{bmatrix} 2\\-1\\4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1\\3\\7 \end{bmatrix}$, then
 $\mathbf{v}_1 \times \mathbf{v}_2 = \det \begin{bmatrix} \mathbf{i} & 2 & 1\\\mathbf{j} & -1 & 3\\\mathbf{k} & 4 & 7 \end{bmatrix} = \begin{vmatrix} -1 & 3\\4 & 7 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1\\4 & 7 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1\\-1 & 3 \end{vmatrix} \mathbf{k}$
 $= -19\mathbf{i} - 10\mathbf{j} + 7\mathbf{k}$
 $= \begin{bmatrix} -19\\-10\\7 \end{bmatrix}$

Observe that $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} in Example 4.2.12. This holds in general as can be verified directly by computing $\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w})$ and $\mathbf{w} \cdot (\mathbf{v} \times \mathbf{w})$, and is recorded as the first part of the following theorem. It will follow from a more general result which, together with the second part, will be proved in Section 4.3 where a more detailed study of the cross product will be undertaken.

Theorem 4.2.5

Let **v** and **w** be vectors in \mathbb{R}^3 .

- 1. $\mathbf{v} \times \mathbf{w}$ is a vector orthogonal to both \mathbf{v} and \mathbf{w} .
- 2. If v and w are nonzero, then $v \times w = 0$ if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

 $\mathbf{v} \cdot \mathbf{w} = 0$ if and only if \mathbf{v} and \mathbf{w} are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, -2), Q(1, 1, 5), and R(2, -2, 3).

Solution. The vectors
$$\overrightarrow{PQ} = \begin{bmatrix} 0\\-2\\7 \end{bmatrix}$$
 and $\overrightarrow{PR} = \begin{bmatrix} 1\\-5\\5 \end{bmatrix}$ lie in the plane, so
$$\overrightarrow{PQ} \times \overrightarrow{PR} = \det \begin{bmatrix} \mathbf{i} & 0 & 1\\\mathbf{j} & -2 & -5\\\mathbf{k} & 7 & 5 \end{bmatrix} = 25\mathbf{i} + 7\mathbf{j} + 2\mathbf{k} = \begin{bmatrix} 25\\7\\2 \end{bmatrix}$$

is a normal for the plane (being orthogonal to both \overrightarrow{PQ} and \overrightarrow{PR}). Hence the plane has equation

25x + 7y + 2z = d for some number *d*.

Since P(1, 3, -2) lies in the plane we have $25 \cdot 1 + 7 \cdot 3 + 2(-2) = d$. Hence d = 42 and the equation is 25x + 7y + 2z = 42. Incidentally, the same equation is obtained (verify) if \overrightarrow{QP} and \overrightarrow{QR} , or \overrightarrow{RP} and \overrightarrow{RQ} , are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are
$$\mathbf{d}_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{d}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, so
 $\mathbf{n} = \mathbf{d}_1 \times \mathbf{d}_2 = \det \begin{bmatrix} \mathbf{i} & 2 & 1 \\ \mathbf{j} & 0 & 1 \\ \mathbf{k} & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$

is perpendicular to both lines. Consider the plane shaded in the diagram containing the first line with **n** as normal. This plane contains $P_1(1, 0, -1)$ and is parallel to the second line. Because $P_2(3, 1, 0)$ is on the second line, the distance in question is just the shortest distance between $P_2(3, 1, 0)$ and this plane. The vector

u from
$$P_1$$
 to P_2 is $\mathbf{u} = \overrightarrow{P_1P_2} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$ and so, as in Example 4.2.11,

the distance is the length of the projection of **u** on **n**.

distance
$$= \left\| \frac{\mathbf{u} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n} \right\| = \frac{|\mathbf{u} \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{3}{\sqrt{14}} = \frac{3\sqrt{14}}{14}$$

Note that it is necessary that $\mathbf{n} = \mathbf{d}_1 \times \mathbf{d}_2$ be nonzero for this calculation to be possible. As is shown later (Theorem 4.3.4), this is guaranteed by the fact that \mathbf{d}_1 and \mathbf{d}_2 are *not* parallel. The points A and B have coordinates A(1+2t, 0, t-1) and B(3+s, 1+s, -s) for some s and t, so $\overrightarrow{AB} = \begin{bmatrix} 2+s-2t\\ 1+s\\ 1-s-t \end{bmatrix}$. This vector is orthogonal to both \mathbf{d}_1 and \mathbf{d}_2 , and the conditions $\overrightarrow{AB} \cdot \mathbf{d}_1 = 0$ and $\overrightarrow{AB} \cdot \mathbf{d}_2 = 0$ give equations 5t - s = 5 and t - 3s = 2. The solution is $s = \frac{-5}{14}$ and $t = \frac{13}{14}$, so the points are $A(\frac{40}{14}, 0, \frac{-1}{14})$ and $B(\frac{37}{14}, \frac{9}{14}, \frac{5}{14})$. We have $\|\overrightarrow{AB}\| = \frac{3\sqrt{14}}{14}$, as before.

Exercises for 4.2

Exercise 4.2.1 Compute $\mathbf{u} \cdot \mathbf{v}$ where:

a.
$$\mathbf{u} = \begin{bmatrix} 2\\-1\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$

b. $\mathbf{u} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \mathbf{v} = \mathbf{u}$
c. $\mathbf{u} = \begin{bmatrix} 1\\1\\-3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$
d. $\mathbf{u} = \begin{bmatrix} 3\\-1\\5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 6\\-7\\-5 \end{bmatrix}$
e. $\mathbf{u} = \begin{bmatrix} x\\y\\z \end{bmatrix}, \mathbf{v} = \begin{bmatrix} a\\b\\c \end{bmatrix}$
f. $\mathbf{u} = \begin{bmatrix} a\\b\\c \end{bmatrix}, \mathbf{v} = \mathbf{0}$

Exercise 4.2.2 Find the angle between the following pairs of vectors.

a.
$$\mathbf{u} = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$

b. $\mathbf{u} = \begin{bmatrix} 3\\-1\\0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -6\\2\\0 \end{bmatrix}$
c. $\mathbf{u} = \begin{bmatrix} 7\\-1\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1\\4\\-1 \end{bmatrix}$
d. $\mathbf{u} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3\\6\\3 \end{bmatrix}$
e. $\mathbf{u} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$

f.
$$\mathbf{u} = \begin{bmatrix} 0\\3\\4 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 5\sqrt{2}\\-7\\-1 \end{bmatrix}$$

Exercise 4.2.3 Find all real numbers *x* such that:

a.
$$\begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} x\\ -2\\ 1 \end{bmatrix}$ are orthogonal.
b. $\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ x\\ 2 \end{bmatrix}$ are at an angle of $\frac{\pi}{3}$.

Exercise 4.2.4 Find all vectors $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ orthogonal

a.
$$\mathbf{u}_1 = \begin{bmatrix} -1\\ -3\\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$$

b. $\mathbf{u}_1 = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$
c. $\mathbf{u}_1 = \begin{bmatrix} 2\\ 0\\ -1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -4\\ 0\\ 2 \end{bmatrix}$
d. $\mathbf{u}_1 = \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

Exercise 4.2.5 Find two orthogonal vectors that are both orthogonal to $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$.

Exercise 4.2.6 Consider the triangle with vertices P(2, 0, -3), Q(5, -2, 1), and R(7, 5, 3).

- a. Show that it is a right-angled triangle.
- b. Find the lengths of the three sides and verify the Pythagorean theorem.

Exercise 4.2.7 Show that the triangle with vertices A(4, -7, 9), B(6, 4, 4), and C(7, 10, -6) is not a rightangled triangle.

Exercise 4.2.8 Find the three internal angles of the triangle with vertices:

Exercise 4.2.9 Show that the line through $P_0(3, 1, 4)$ and $P_1(2, 1, 3)$ is perpendicular to the line through $P_2(1, -1, 2)$ and $P_3(0, 5, 3)$.

Exercise 4.2.10 In each case, compute the projection of Exercise 4.2.13 Compute $\mathbf{u} \times \mathbf{v}$ where: u on v.

Exercise 4.2.11 In each case, write $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, where \mathbf{u}_1 is parallel to \mathbf{v} and \mathbf{u}_2 is orthogonal to \mathbf{v} .

a. $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ b. $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix}$ c. $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$ d. $\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -6 \\ 4 \\ -1 \end{bmatrix}$ **Exercise 4.2.12** Calculate the distance from the point *P* to the line in each case and find the point Q on the line closest to P.

a.
$$P(3, 2-1)$$

line: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$
b. $P(1, -1, 3)$
line: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$

a.
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$

b. $\mathbf{u} = \begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -6\\ 2\\ 0 \end{bmatrix}$
c. $\mathbf{u} = \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$
d. $\mathbf{u} = \begin{bmatrix} 2\\ 0\\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1\\ 4\\ 7 \end{bmatrix}$

Exercise 4.2.14 Find an equation of each of the following planes.

- a. Passing through A(2, 1, 3), B(3, -1, 5), and C(1, 2, -3).
- b. Passing through A(1, -1, 6), B(0, 0, 1), and C(4, 7, -11).
- c. Passing through P(2, -3, 5) and parallel to the plane with equation 3x - 2y - z = 0.
- d. Passing through P(3, 0, -1) and parallel to the plane with equation 2x - y + z = 3.
- e. Containing P(3, 0, -1) and the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$

f. Containing P(2, 1, 0) and the line

$\begin{bmatrix} x \end{bmatrix}$		3		[1]	
y	=	-1	+t	0	
		2		1]	

g. Containing the lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

- h. Containing the lines $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 5 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.
- i. Each point of which is equidistant from P(2, -1, 3) and Q(1, 1, -1).
- j. Each point of which is equidistant from P(0, 1, -1) and Q(2, -1, -3).

Exercise 4.2.15 In each case, find a vector equation of the line.

- a. Passing through P(3, -1, 4) and perpendicular to the plane 3x 2y z = 0.
- b. Passing through P(2, -1, 3) and perpendicular to the plane 2x + y = 1.
- c. Passing through P(0, 0, 0) and perpendicular to the lines $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$.
- d. Passing through P(1, 1, -1), and perpendicular to the lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \text{ and}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ -2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}.$$

- e. Passing through P(2, 1, -1), intersecting the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, and perpendicular to that line.
- f. Passing through P(1, 1, 2), intersecting the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and perpendicular to that line.

Exercise 4.2.16 In each case, find the shortest distance from the point P to the plane and find the point Q on the plane closest to P.

- a. P(2, 3, 0); plane with equation 5x + y + z = 1.
- b. P(3, 1, -1); plane with equation 2x + y z = 6.

Exercise 4.2.17

- a. Does the line through P(1, 2, -3) with direction vector $\mathbf{d} = \begin{bmatrix} 1\\ 2\\ -3 \end{bmatrix}$ lie in the plane 2x - y - z = 3? Explain.
- b. Does the plane through P(4, 0, 5), Q(2, 2, 1), and R(1, -1, 2) pass through the origin? Explain.

Exercise 4.2.18 Show that every plane containing P(1, 2, -1) and Q(2, 0, 1) must also contain R(-1, 6, -5).

Exercise 4.2.19 Find the equations of the line of intersection of the following planes.

a. 2x - 3y + 2z = 5 and x + 2y - z = 4.
b. 3x + y - 2z = 1 and x + y + z = 5.

Exercise 4.2.20 In each case, find all points of intersection of the given plane and the line

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}.$$

a. $x - 3y + 2z = 4$
b. $2x - y - z = 5$
c. $3x - y + z = 8$
d. $-x - 4y - 3z = 6$

Exercise 4.2.21 Find the equation of *all* planes:

- a. Perpendicular to the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$
- b. Perpendicular to the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}.$
- c. Containing the origin.
- d. Containing P(3, 2, -4).
- e. Containing P(1, 1, -1) and Q(0, 1, 1).
- f. Containing P(2, -1, 1) and Q(1, 0, 0).
- g. Containing the line

<i>x</i>		2		1	
y y	=	1	+t	-1	
		0		0	

h. Containing the line

$\begin{bmatrix} x \end{bmatrix}$		[3]		[1]	
y	=	0	+t	-2	
		2		-1	

Exercise 4.2.22 If a plane contains two distinct points P_1 and P_2 , show that it contains every point on the line through P_1 and P_2 .

Exercise 4.2.23 Find the shortest distance between the following pairs of parallel lines.

a.	$\begin{bmatrix} x \\ y \\ z \\ x \end{bmatrix} =$	$\begin{bmatrix} 2\\-1\\3 \end{bmatrix} + t \begin{bmatrix} 1\\-1\\4 \end{bmatrix};$ $\begin{bmatrix} 1\\-1\\4 \end{bmatrix};$
	$\left[\begin{array}{c} y\\z\end{array}\right] =$	$\left[\begin{array}{c}0\\1\end{array}\right]+t\left[\begin{array}{c}-1\\4\end{array}\right]$
b.	$\left[\begin{array}{c} x\\ y\\ z \end{array}\right] =$	$\begin{bmatrix} 3\\0\\2 \end{bmatrix} + t \begin{bmatrix} 3\\1\\0 \end{bmatrix};$
	$\left[\begin{array}{c} x\\ y\\ z \end{array}\right] =$	$\begin{bmatrix} -1\\2\\2 \end{bmatrix} + t \begin{bmatrix} 3\\1\\0 \end{bmatrix}$

Exercise 4.2.24 Find the shortest distance between the following pairs of nonparallel lines and find the points on the lines that are closest together.

a.	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix};$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix};$
b.	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix};$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix};$
c.	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix};$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$
d.	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix};$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Exercise 4.2.25 Show that two lines in the plane with slopes m_1 and m_2 are perpendicular if and only if $m_1m_2 = -1$. [*Hint*: Example 4.1.11.]

Exercise 4.2.26

- a. Show that, of the four diagonals of a cube, no pair is perpendicular.
- b. Show that each diagonal is perpendicular to the face diagonals it does not meet.

Exercise 4.2.27 Given a rectangular solid with sides of lengths 1, 1, and $\sqrt{2}$, find the angle between a diagonal and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with sides of lengths *a*, *b*, and *c*. Show that it has two orthogonal diagonals if and only if the sum of two of a^2 , b^2 , and c^2 equals the third.

Exercise 4.2.29 Let *A*, *B*, and *C*(2, -1, 1) be the vertices of a triangle where \overrightarrow{AB} is parallel to $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$, \overrightarrow{AC} is

parallel to $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and angle $C = 90^\circ$. Find the equation of the line through *B* and *C*.

Exercise 4.2.30 If the diagonals of a parallelogram have equal length, show that the parallelogram is a rectangle.

Exercise 4.2.31 Given $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in component form,

show that the projections of \mathbf{v} on \mathbf{i} , \mathbf{j} , and \mathbf{k} are $x\mathbf{i}$, $y\mathbf{j}$, and $z\mathbf{k}$, respectively.

Exercise 4.2.32

- a. Can $\mathbf{u} \cdot \mathbf{v} = -7$ if $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = 2$? Defend your answer.
- b. Find $\mathbf{u} \cdot \mathbf{v}$ if $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$, $\|\mathbf{v}\| = 6$, and the angle between \mathbf{u} and \mathbf{v} is $\frac{2\pi}{3}$.

Exercise 4.2.33 Show $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2$ for any vectors \mathbf{u} and \mathbf{v} .

Exercise 4.2.34

- a. Show $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$ for any vectors \mathbf{u} and \mathbf{v} .
- b. What does this say about parallelograms?

Exercise 4.2.35 Show that if the diagonals of a parallelogram are perpendicular, it is necessarily a rhombus. [*Hint*: Example 4.2.5.]

Exercise 4.2.36 Let *A* and *B* be the end points of a diameter of a circle (see the diagram). If *C* is any point on the circle, show that *AC* and *BC* are perpendicular. [*Hint*: Express $\overrightarrow{AB} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$ and \overrightarrow{BC} in terms of $\mathbf{u} = \overrightarrow{OA}$ and $\mathbf{v} = \overrightarrow{OC}$, where *O* is the centre.]

Exercise 4.2.37 Show that **u** and **v** are orthogonal, if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Exercise 4.2.38 Let **u**, **v**, and **w** be pairwise orthogonal vectors.

- a. Show that $\|\mathbf{u} + \mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$.
- b. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are all the same length, show that they all make the same angle with $\mathbf{u} + \mathbf{v} + \mathbf{w}$.

Exercise 4.2.39

- a. Show that $\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$ is orthogonal to every vector along the line ax + by + c = 0.
- b. Show that the shortest distance from $P_0(x_0, y_0)$ to the line is $\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$.

[*Hint*: If P_1 is on the line, project $\mathbf{u} = \overrightarrow{P_1P_0}$ on \mathbf{n} .]

Exercise 4.2.40 Assume **u** and **v** are nonzero vectors that are not parallel. Show that $\mathbf{w} = \|\mathbf{u}\|\mathbf{v} + \|\mathbf{v}\|\mathbf{u}$ is a nonzero vector that bisects the angle between **u** and **v**.

Exercise 4.2.41 Let α , β , and γ be the angles a vector $\mathbf{v} \neq \mathbf{0}$ makes with the positive *x*, *y*, and *z* axes, respectively. Then $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the **direction cosines** of the vector \mathbf{v} .

a. If
$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
, show that $\cos \alpha = \frac{a}{\|\mathbf{v}\|}, \cos \beta = \frac{b}{\|\mathbf{v}\|},$
and $\cos \gamma = \frac{c}{\|\mathbf{v}\|}.$

b. Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Exercise 4.2.42 Let $\mathbf{v} \neq \mathbf{0}$ be any nonzero vector and suppose that a vector \mathbf{u} can be written as $\mathbf{u} = \mathbf{p} + \mathbf{q}$, where \mathbf{p} is parallel to \mathbf{v} and \mathbf{q} is orthogonal to \mathbf{v} . Show that \mathbf{p} must equal the projection of \mathbf{u} on \mathbf{v} . [*Hint*: Argue as in the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let $\mathbf{v} \neq \mathbf{0}$ be a nonzero vector and let $a \neq 0$ be a scalar. If \mathbf{u} is any vector, show that the projection of \mathbf{u} on \mathbf{v} equals the projection of \mathbf{u} on $a\mathbf{v}$.

Exercise 4.2.44

a. Show that the **Cauchy-Schwarz inequality** $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}||$ holds for all vectors \mathbf{u} and \mathbf{v} . [*Hint*: $|\cos \theta| \le 1$ for all angles θ .]

b. Show that $|\mathbf{u} \cdot \mathbf{v}| = ||\mathbf{u}|| ||\mathbf{v}||$ if and only if \mathbf{u} and \mathbf{v} are parallel.

[*Hint*: When is $\cos \theta = \pm 1$?]

c. Show that $|x_1x_2 + y_1y_2 + z_1z_2|$ $\leq \sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}$

holds for all numbers x_1, x_2, y_1, y_2, z_1 , and z_2 .

- d. Show that $|xy + yz + zx| \le x^2 + y^2 + z^2$ for all x, y, and z.
- e. Show that $(x+y+z)^2 \leq 3(x^2+y^2+z^2)$ holds for all x, y, and z.

Exercise 4.2.45 Prove that the **triangle inequality** $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ holds for all vectors \mathbf{u} and \mathbf{v} . [*Hint*: Consider the triangle with **u** and **v** as two sides.]

4.3 More on the Cross Product

The cross product $\mathbf{v} \times \mathbf{w}$ of two \mathbb{R}^3 -vectors $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ was defined in Section 4.2 where

we observed that it can be best remembered using a determinant

$$\mathbf{v} \times \mathbf{w} = \det \begin{bmatrix} \mathbf{i} & x_1 & x_2 \\ \mathbf{j} & y_1 & y_2 \\ \mathbf{k} & z_1 & z_2 \end{bmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \mathbf{k}$$
(4.3)

Here $\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{k} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ are the coordinate vectors, and the determinant is expanded

along the first column. We observed (but did not prove) in Theorem 4.2.5 that $\mathbf{v} \times \mathbf{w}$ is orthogonal to both v and w. This follows easily from the next result.

Theorem 4.3.1										
If u =	$\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$, v =	$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, and $\mathbf{w} =$	$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det$	$\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$	x_1 y_1 z_1	$\begin{array}{c} x_2 \\ y_2 \\ z_2 \\ \end{array}$	

Proof. Recall that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is computed by multiplying corresponding components of \mathbf{u} and $\mathbf{v} \times \mathbf{w}$ and then adding. Using equation (4.3), the result is:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = x_0 \left(\begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \right) + y_0 \left(-\begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} \right) + z_0 \left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \right) = \det \left[\begin{vmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{vmatrix} \right]$$

where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If **u**, **v**, and **w** are three vectors in \mathbb{R}^3 , then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$$