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4.2 Projections and Planes

P

Q

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular
lines is fundamental. As an illustration, suppose a point P and a plane
are given and it is desired to find the point Q that lies in the plane and is
closest to P, as shown in Figure 4.2.1. Clearly, what is required is to find
the line through P that is perpendicular to the plane and then to obtain Q

as the point of intersection of this line with the plane. Finding the line
perpendicular to the plane requires a way to determine when two vectors
are perpendicular. This can be done using the idea of the dot product of
two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in R3

Given vectors v =




x1

y1

z1


 and w =




x2

y2

z2


, their dot product v ·w is a number defined

v ·w = x1x2 + y1y2 + z1z2 = vT w

Because v ·w is a number, it is sometimes called the scalar product of v and w.11

Example 4.2.1

If v =




2
−1

3


 and w =




1
4
−1


, then v ·w = 2 ·1+(−1) ·4+3 · (−1) =−5.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1

Let u, v, and w denote vectors in R3 (or R2).

1. v ·w is a real number.

2. v ·w = w ·v.

3. v ·0 = 0 = 0 ·v.

4. v ·v = ‖v‖2.

11Similarly, if v =

[
x1

y1

]
and w =

[
x2

y2

]
in R2, then v ·w = x1x2 + y1y2.
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5. (kv) ·w = k(w ·v) = v · (kw) for all scalars k.

6. u · (v±w) = u ·v±u ·w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are properties of
matrix arithmetic (because w ·v = vT w), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

3u · (2v−3w+4z) = 6(u ·v)−9(u ·w)+12(u · z)

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that ‖v−3w‖2 = 1 when ‖v‖= 2, ‖w‖= 1, and v ·w = 2.

Solution. We apply Theorem 4.2.1 several times:

‖v−3w‖2 = (v−3w) · (v−3w)

= v · (v−3w)−3w · (v−3w)

= v ·v−3(v ·w)−3(w ·v)+9(w ·w)

= ‖v‖2−6(v ·w)+9‖w‖2

= 4−12+9 = 1

There is an intrinsic description of the dot product of two nonzero vectors in R3. To understand it we
require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

c2 = a2 +b2−2abcosθ

a
c

b

p

θ q b−q

Figure 4.2.2

Proof. We prove it when is θ acute, that is 0 ≤ θ < π
2 ; the obtuse case

is similar. In Figure 4.2.2 we have p = asinθ and q = acosθ . Hence
Pythagoras’ theorem gives

c2 = p2 +(b−q)2 = a2 sin2 θ +(b−acosθ)2

= a2(sin2 θ + cos2 θ)+b2−2abcosθ

The law of cosines follows because sin2 θ + cos2 θ = 1 for any angle θ .
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v

w

θ

θ acute

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a right
angle (because cos π

2 = 0).

Now let v and w be nonzero vectors positioned with a common tail as
in Figure 4.2.3. Then they determine a unique angle θ in the range

0≤ θ ≤ π

This angle θ will be called the angle between v and w. Figure 4.2.3 il-
lustrates when θ is acute (less than π

2 ) and obtuse (greater than π
2 ). Clearly

v and w are parallel if θ is either 0 or π . Note that we do not define the
angle between v and w if one of these vectors is 0.

The next result gives an easy way to compute the angle between two
nonzero vectors using the dot product.

Theorem 4.2.2

Let v and w be nonzero vectors. If θ is the angle between v and w, then

v ·w = ‖v‖‖w‖cosθ

v

w

v−w

θ

Figure 4.2.4

Proof. We calculate ‖v−w‖2 in two ways. First apply the law of cosines
to the triangle in Figure 4.2.4 to obtain:

‖v−w‖2 = ‖v‖2 +‖w‖2−2‖v‖‖w‖cosθ

On the other hand, we use Theorem 4.2.1:

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w
= ‖v‖2−2(v ·w)+‖w‖2

Comparing these we see that −2‖v‖‖w‖cosθ =−2(v ·w), and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of v ·w because ‖v‖, ‖w‖,
and the angle θ between v and w do not depend on the choice of coordinate system. Moreover, since ‖v‖
and ‖w‖ are nonzero (v and w are nonzero vectors), it gives a formula for the cosine of the angle θ :

cosθ = v·w
‖v‖‖w‖ (4.1)

Since 0≤ θ ≤ π , this can be used to find θ .

Example 4.2.3

Compute the angle between u =



−1

1
2


 and v =




2
1
−1


.
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2π
3

(
−1
2 ,

√
3

2

)

−1
2

O
x

y
Solution. Compute cosθ = v·w

‖v‖‖w‖ =
−2+1−2√

6
√

6
=−1

2 . Now recall
that cosθ and sinθ are defined so that (cosθ , sinθ ) is the point on
the unit circle determined by the angle θ (drawn counterclockwise,
starting from the positive x axis). In the present case, we know
that cosθ =−1

2 and that 0≤ θ ≤ π . Because cos π
3 = 1

2 , it follows
that θ = 2π

3 (see the diagram).

If v and w are nonzero, equation (4.1) shows that cosθ has the same sign as v ·w, so

v ·w > 0 if and only if θ is acute (0≤ θ < π
2 )

v ·w < 0 if and only if θ is obtuse (π
2 < θ ≤ 0)

v ·w = 0 if and only if θ = π
2

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in linear
algebra:

Definition 4.5 Orthogonal Vectors in R3

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between them is π
2 .

Since v ·w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 4.2.3

Two vectors v and w are orthogonal if and only if v ·w = 0.

Example 4.2.4

Show that the points P(3, −1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution. The vectors along the sides of the triangle are

−→
PQ =




1
2
3


 ,
−→
PR =




3
1
3


 , and

−→
QR =




2
−1

0




Evidently
−→
PQ ·−→QR = 2−2+0 = 0, so

−→
PQ and

−→
QR are orthogonal vectors. This means sides PQ

and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems involving
perpendicular lines.
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Example 4.2.5

A parallelogram with sides of equal length is called a rhombus. Show that the diagonals of a
rhombus are perpendicular.

v

u

u−v

u+v

Solution. Let u and v denote vectors along two adjacent sides
of a rhombus, as shown in the diagram. Then the diagonals are
u−v and u+v, and we compute

(u−v) · (u+v) = u · (u+v)−v · (u+v)

= u ·u+u ·v−v ·u−v ·v
= ‖u‖2−‖v‖2

= 0

because ‖u‖= ‖v‖ (it is a rhombus). Hence u−v and u+v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal vectors.
Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30◦ to the horizontal as in the
diagram. Neglecting friction, how much force is required to keep the block from sliding down the
surface?

30◦

30◦

w

w1

w2

Solution. Let w denote the weight (force due to gravity) exerted
on the block. Then ‖w‖= 10 kilograms and the direction of w is
vertically down as in the diagram. The idea is to write w as a sum
w = w1 +w2 where w1 is parallel to the inclined surface and w2

is perpendicular to the surface. Since there is no friction, the force
required is −w1 because the force w2 has no effect parallel to the

surface. As the angle between w and w2 is 30◦ in the diagram, we have ‖w1‖
‖w‖ = sin30◦ = 1

2 . Hence

‖w1‖= 1
2‖w‖= 1

210 = 5. Thus the required force has a magnitude of 5 kilograms weight directed
up the surface.
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u

u1
Q

P

P1

d
u−u1

(a)

u

u1
Q

P

P1

d

u−u1

(b)

Figure 4.2.5

If a nonzero vector d is specified, the key idea in Example 4.2.6 is to
be able to write an arbitrary vector u as a sum of two vectors,

u = u1 +u2

where u1 is parallel to d and u2 = u−u1 is orthogonal to d. Suppose that
u and d 6= 0 emanate from a common tail Q (see Figure 4.2.5). Let P be
the tip of u, and let P1 denote the foot of the perpendicular from P to the
line through Q parallel to d.

Then u1 =
−→
QP1 has the required properties:

1. u1 is parallel to d.

2. u2 = u−u1 is orthogonal to d.

3. u = u1 +u2.

Definition 4.6 Projection in R3

The vector u1 =
−→
QP1 in Figure 4.2.5 is called the projection of u on d. It is denoted

u1 = projd u

In Figure 4.2.5(a) the vector u1 = projd u has the same direction as d; however, u1 and d have opposite
directions if the angle between u and d is greater than π

2 (Figure 4.2.5(b)). Note that the projection
u1 = projd u is zero if and only if u and d are orthogonal.

Calculating the projection of u on d 6= 0 is remarkably easy.

Theorem 4.2.4

Let u and d 6= 0 be vectors.

1. The projection of u on d is given by projd u = u·d
‖d‖2 d.

2. The vector u− projd u is orthogonal to d.

Proof. The vector u1 = projd u is parallel to d and so has the form u1 = td for some scalar t. The
requirement that u− u1 and d are orthogonal determines t. In fact, it means that (u− u1) · d = 0 by
Theorem 4.2.3. If u1 = td is substituted here, the condition is

0 = (u− td) ·d = u ·d− t(d ·d) = u ·d− t‖d‖2

It follows that t = u·d
‖d‖2 , where the assumption that d 6= 0 guarantees that ‖d‖2 6= 0.
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Example 4.2.7

Find the projection of u =




2
−3

1


 on d =




1
−1

3


 and express u = u1 +u2 where u1 is parallel

to d and u2 is orthogonal to d.

Solution. The projection u1 of u on d is

u1 = projd u = u·d
‖d‖2 d = 2+3+3

12+(−1)2+32




1
−1

3


= 8

11




1
−1

3




Hence u2 = u−u1 =
1

11




14
−25
−13


, and this is orthogonal to d by Theorem 4.2.4 (alternatively,

observe that d ·u2 = 0). Since u = u1 +u2, we are done.

Example 4.2.8

u
u1

u−u1

Q

P(1, 3, −2)

P0(2, 0, −1)

d

Find the shortest distance (see diagram) from the point P(1, 3, −2)

to the line through P0(2, 0, −1) with direction vector d =




1
−1

0


.

Also find the point Q that lies on the line and is closest to P.

Solution. Let u =




1
3
−2


−




2
0
−1


=



−1

3
−1


 denote the vector from P0 to P, and let u1 denote

the projection of u on d. Thus

u1 =
u·d
‖d‖2 d = −1−3+0

12+(−1)2+02 d =−2d =



−2

2
0




by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the distance
is

‖−→QP‖= ‖u−u1‖=

∥∥∥∥∥∥




1
1
−1



∥∥∥∥∥∥
=
√

3

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, respectively. Then

p0 =




2
0
−1


 and q = p0 +u1 =




0
2
−1


. Hence Q(0, 2, −1) is the required point. It can be

checked that the distance from Q to P is
√

3, as expected.
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Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there is
exactly one containing any given point. This fact can be used to give a very simple description of a plane.
To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane

A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in the plane.

n

P0

P

Figure 4.2.6

For example, the coordinate vector k is a normal for the x-y plane.

Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there is a
unique plane through P0 with normal n, shaded in Figure 4.2.6. A point
P = P(x, y, z) lies on this plane if and only if the vector

−→
P0P is orthogonal

to n—that is, if and only if n · −→P0P = 0. Because
−→
P0P =




x− x0

y− y0

z− z0


 this

gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =




a

b

c


 6= 0 as a normal vector is given by

a(x− x0)+b(y− y0)+ c(z− z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

Example 4.2.9

Find an equation of the plane through P0(1, −1, 3) with n =




3
−1

2


 as normal.

Solution. Here the general scalar equation becomes

3(x−1)− (y+1)+2(z−3) = 0

This simplifies to 3x− y+2z = 10.

If we write d = ax0+by0+cz0, the scalar equation shows that every plane with normal n =




a

b

c


 has
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a linear equation of the form
ax+by+ cz = d (4.2)

for some constant d. Conversely, the graph of this equation is a plane with n =




a

b

c


 as a normal vector

(assuming that a, b, and c are not all zero).

Example 4.2.10

Find an equation of the plane through P0(3, −1, 2) that is parallel to the plane with equation
2x−3y = 6.

Solution. The plane with equation 2x−3y = 6 has normal n =




2
−3

0


. Because the two planes

are parallel, n serves as a normal for the plane we seek, so the equation is 2x−3y = d for some d

by Equation 4.2. Insisting that P0(3, −1, 2) lies on the plane determines d; that is,
d = 2 ·3−3(−1) = 9. Hence, the equation is 2x−3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =




x0

y0

z0


 and p =




x

y

z


. Given a nonzero

vector n, the scalar equation of the plane through P0(x0, y0, z0) with normal n =




a

b

c


 takes the vector

form:

Vector Equation of a Plane

The plane with normal n 6= 0 through the point with vector p0 is given by

n · (p−p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal n has vector equation n ·p = d for some number d.

This is useful in the second solution of Example 4.2.11.

Example 4.2.11

Find the shortest distance from the point P(2, 1, −3) to the plane with equation 3x− y+4z = 1.
Also find the point Q on this plane closest to P.
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u

P0(0, −1, 0)
Q(x, y, z)

P(2, 1, −3)u1

n

Solution 1. The plane in question has normal n =




3
−1

4


.

Choose any point P0 on the plane—say P0(0, −1, 0)—and let
Q(x, y, z) be the point on the plane closest to P (see the diagram).

The vector from P0 to P is u =




2
2
−3


. Now erect n with its

tail at P0. Then
−→
QP = u1 and u1 is the projection of u on n:

u1 =
n·u
‖n‖2 n = −8

26




3
−1

4


= −4

13




3
−1

4




Hence the distance is ‖−→QP‖ = ‖u1‖ = 4
√

26
13 . To calculate the point Q, let q =




x

y

z


 and

p0 =




0
−1

0


 be the vectors of Q and P0. Then

q = p0 +u−u1 =




0
−1

0


+




2
2
−3


+ 4

13




3
−1

4


=




38
13

9
13

−23
13




This gives the coordinates of Q(38
13 , 9

13 , −23
13 ).

Solution 2. Let q =




x

y

z


 and p =




2
1
−3


 be the vectors of Q and P. Then Q is on the line

through P with direction vector n, so q = p+ tn for some scalar t. In addition, Q lies on the plane,
so n ·q = 1. This determines t:

1 = n ·q = n · (p+ tn) = n ·p+ t‖n‖2 =−7+ t(26)

This gives t = 8
26 = 4

13 , so




x

y

z


= q = p+ tn =




2
1
−3


+ 4

13




3
−1

4


+ 1

13




38
9

−23




as before. This determines Q (in the diagram), and the reader can verify that the required distance
is ‖−→QP‖= 4

13

√
26, as before.
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The Cross Product

If P, Q, and R are three distinct points in R3 that are not all on some line, it is clear geometrically that
there is a unique plane containing all three. The vectors

−→
PQ and

−→
PR both lie in this plane, so finding a

normal amounts to finding a nonzero vector orthogonal to both
−→
PQ and

−→
PR. The cross product provides a

systematic way to do this.

Definition 4.8 Cross Product

Given vectors v1 =




x1

y1

z1


 and v2 =




x2

y2

z2


, define the cross product v1×v2 by

v1×v2 =




y1z2− z1y2

−(x1z2− z1x2)
x1y2− y1x2




x

y

z

i
j

k

O

Figure 4.2.7

(Because it is a vector, v1×v2 is often called the vector product.) There
is an easy way to remember this definition using the coordinate vectors:

i =




1
0
0


 , j =




0
1
0


 , and k =




0
0
1




They are vectors of length 1 pointing along the positive x, y, and z axes,
respectively, as in Figure 4.2.7. The reason for the name is that any vector
can be written as




x

y

z


= xi+ yj+ zk

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =




x1

y1

z1


 and v2 =




x2

y2

z2


 are two vectors, then

v1×v2 = det




i x1 x2

j y1 y2

k z1 z2


=

∣∣∣∣
y1 y2

z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2

y1 y2

∣∣∣∣k

where the determinant is expanded along the first column.
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Example 4.2.12

If v =




2
−1

4


 and w =




1
3
7


, then

v1×v2 = det




i 2 1
j −1 3
k 4 7


=

∣∣∣∣
−1 3

4 7

∣∣∣∣ i−
∣∣∣∣

2 1
4 7

∣∣∣∣ j+
∣∣∣∣

2 1
−1 3

∣∣∣∣k

=−19i−10j+7k

=



−19
−10

7




Observe that v×w is orthogonal to both v and w in Example 4.2.12. This holds in general as can be
verified directly by computing v · (v×w) and w · (v×w), and is recorded as the first part of the following
theorem. It will follow from a more general result which, together with the second part, will be proved in
Section 4.3 where a more detailed study of the cross product will be undertaken.

Theorem 4.2.5

Let v and w be vectors in R3.

1. v×w is a vector orthogonal to both v and w.

2. If v and w are nonzero, then v×w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

v ·w = 0 if and only if v and w are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, −2), Q(1, 1, 5), and R(2, −2, 3).

Solution. The vectors
−→
PQ =




0
−2

7


 and

−→
PR =




1
−5

5


 lie in the plane, so

−→
PQ×−→PR = det




i 0 1
j −2 −5
k 7 5


= 25i+7j+2k =




25
7
2




is a normal for the plane (being orthogonal to both
−→
PQ and

−→
PR). Hence the plane has equation

25x+7y+2z = d for some number d.
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Since P(1, 3, −2) lies in the plane we have 25 ·1+7 ·3+2(−2) = d. Hence d = 42 and the
equation is 25x+7y+2z = 42. Incidentally, the same equation is obtained (verify) if

−→
QP and

−→
QR,

or
−→
RP and

−→
RQ, are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines



x

y

z


=




1
0
−1


+ t




2
0
1


 and




x

y

z


=




3
1
0


+ s




1
1
−1




Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are d1 =




2
0
1


 and d2 =




1
1
−1


, so

n = d1×d2 = det




i 2 1
j 0 1
k 1 −1


=



−1

3
2




u

P2
n

B

A

P1

is perpendicular to both lines. Consider the plane shaded in
the diagram containing the first line with n as normal. This plane
contains P1(1, 0, −1) and is parallel to the second line. Because
P2(3, 1, 0) is on the second line, the distance in question is just the
shortest distance between P2(3, 1, 0) and this plane. The vector

u from P1 to P2 is u =
−→
P1P2 =




2
1
1


 and so, as in Example 4.2.11,

the distance is the length of the projection of u on n.

distance =
∥∥∥ u·n
‖n‖2 n

∥∥∥= |u·n|
‖n‖ = 3√

14
= 3
√

14
14

Note that it is necessary that n = d1×d2 be nonzero for this calculation to be possible. As is
shown later (Theorem 4.3.4), this is guaranteed by the fact that d1 and d2 are not parallel.
The points A and B have coordinates A(1+2t, 0, t−1) and B(3+ s, 1+ s, −s) for some s

and t, so
−→
AB =




2+ s−2t

1+ s

1− s− t


. This vector is orthogonal to both d1 and d2, and the conditions

−→
AB ·d1 = 0 and

−→
AB ·d2 = 0 give equations 5t− s = 5 and t−3s = 2. The solution is s = −5

14 and

t = 13
14 , so the points are A(40

14 , 0, −1
14 ) and B(37

14 , 9
14 , 5

14). We have ‖−→AB‖= 3
√

14
14 , as before.



4.2. Projections and Planes 239

Exercises for 4.2

Exercise 4.2.1 Compute u ·v where:

a. u =




2
−1

3


, v =



−1

1
1




b. u =




1
2
−1


, v = u

c. u =




1
1
−3


, v =




2
−1

1




d. u =




3
−1

5


, v =




6
−7
−5




e. u =




x

y

z


, v =




a

b

c




f. u =




a

b

c


, v = 0

Exercise 4.2.2 Find the angle between the following
pairs of vectors.

a. u =




1
0
3


, v =




2
0
1




b. u =




3
−1

0


, v =



−6

2
0




c. u =




7
−1

3


, v =




1
4
−1




d. u =




2
1
−1


, v =




3
6
3




e. u =




1
−1

0


, v =




0
1
1




f. u =




0
3
4


, v =




5
√

2
−7
−1




Exercise 4.2.3 Find all real numbers x such that:

a.




2
−1

3


 and




x

−2
1


 are orthogonal.

b.




2
−1

1


 and




1
x

2


 are at an angle of π

3 .

Exercise 4.2.4 Find all vectors v =




x

y

z


 orthogonal

to both:

a. u1 =



−1
−3

2


, u2 =




0
1
1




b. u1 =




3
−1

2


, u2 =




2
0
1




c. u1 =




2
0
−1


, u2 =



−4

0
2




d. u1 =




2
−1

3


, u2 =




0
0
0




Exercise 4.2.5 Find two orthogonal vectors that are both

orthogonal to v =




1
2
0


.

Exercise 4.2.6 Consider the triangle with vertices
P(2, 0, −3), Q(5, −2, 1), and R(7, 5, 3).

a. Show that it is a right-angled triangle.

b. Find the lengths of the three sides and verify the
Pythagorean theorem.
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Exercise 4.2.7 Show that the triangle with vertices
A(4, −7, 9), B(6, 4, 4), and C(7, 10, −6) is not a right-
angled triangle.

Exercise 4.2.8 Find the three internal angles of the tri-
angle with vertices:

a. A(3, 1, −2), B(3, 0, −1), and C(5, 2, −1)

b. A(3, 1, −2), B(5, 2, −1), and C(4, 3, −3)

Exercise 4.2.9 Show that the line through P0(3, 1, 4)
and P1(2, 1, 3) is perpendicular to the line through
P2(1, −1, 2) and P3(0, 5, 3).

Exercise 4.2.10 In each case, compute the projection of
u on v.

a. u =




5
7
1


, v =




2
−1

3




b. u =




3
−2

1


, v =




4
1
1




c. u =




1
−1

2


, v =




3
−1

1




d. u =




3
−2
−1


, v =



−6

4
2




Exercise 4.2.11 In each case, write u = u1 +u2, where
u1 is parallel to v and u2 is orthogonal to v.

a. u =




2
−1

1


, v =




1
−1

3




b. u =




3
1
0


, v =



−2

1
4




c. u =




2
−1

0


, v =




3
1
−1




d. u =




3
−2

1


, v =



−6

4
−1




Exercise 4.2.12 Calculate the distance from the point P

to the line in each case and find the point Q on the line
closest to P.

a. P(3, 2−1)

line:




x

y

z


=




2
1
3


+ t




3
−1
−2




b. P(1, −1, 3)

line:




x

y

z


=




1
0
−1


+ t




3
1
4




Exercise 4.2.13 Compute u×v where:

a. u =




1
2
3


, v =




1
1
2




b. u =




3
−1

0


, v =



−6

2
0




c. u =




3
−2

1


, v =




1
1
−1




d. u =




2
0
−1


, v =




1
4
7




Exercise 4.2.14 Find an equation of each of the follow-
ing planes.

a. Passing through A(2, 1, 3), B(3, −1, 5), and
C(1, 2, −3).

b. Passing through A(1, −1, 6), B(0, 0, 1), and
C(4, 7, −11).

c. Passing through P(2, −3, 5) and parallel to the
plane with equation 3x−2y− z = 0.

d. Passing through P(3, 0, −1) and parallel to the
plane with equation 2x− y+ z = 3.

e. Containing P(3, 0, −1) and the line


x

y

z


=




0
0
2


+ t




1
0
1


 .
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f. Containing P(2, 1, 0) and the line



x

y

z


=




3
−1

2


+ t




1
0
−1


 .

g. Containing the lines



x

y

z


=




1
−1

2


+ t




1
1
1


 and




x

y

z


=




0
0
2


+ t




1
−1

0


.

h. Containing the lines




x

y

z


=




3
1
0


+ t




1
−1

3




and




x

y

z


=




0
−2

5


+ t




2
1
−1


.

i. Each point of which is equidistant from
P(2, −1, 3) and Q(1, 1, −1).

j. Each point of which is equidistant from
P(0, 1, −1) and Q(2, −1, −3).

Exercise 4.2.15 In each case, find a vector equation of
the line.

a. Passing through P(3, −1, 4) and perpendicular to
the plane 3x−2y− z = 0.

b. Passing through P(2, −1, 3) and perpendicular to
the plane 2x+ y = 1.

c. Passing through P(0, 0, 0) and perpendicular

to the lines




x

y

z


 =




1
1
0


 + t




2
0
−1


 and




x

y

z


=




2
1
−3


+ t




1
−1

5


.

d. Passing through P(1, 1, −1), and perpendicular to
the lines


x

y

z


=




2
0
1


+ t




1
1
−2


 and




x

y

z


=




5
5
−2


+ t




1
2
−3


.

e. Passing through P(2, 1, −1), intersecting the line


x

y

z


 =




1
2
−1


+ t




3
0
1


, and perpendicular

to that line.

f. Passing through P(1, 1, 2), intersecting the line


x

y

z


 =




2
1
0


+ t




1
1
1


, and perpendicular to

that line.

Exercise 4.2.16 In each case, find the shortest distance
from the point P to the plane and find the point Q on the
plane closest to P.

a. P(2, 3, 0); plane with equation 5x+ y+ z = 1.

b. P(3, 1, −1); plane with equation 2x+ y− z = 6.

Exercise 4.2.17

a. Does the line through P(1, 2, −3) with direction

vector d =




1
2
−3


 lie in the plane 2x−y−z = 3?

Explain.

b. Does the plane through P(4, 0, 5), Q(2, 2, 1), and
R(1, −1, 2) pass through the origin? Explain.

Exercise 4.2.18 Show that every plane contain-
ing P(1, 2, −1) and Q(2, 0, 1) must also contain
R(−1, 6, −5).

Exercise 4.2.19 Find the equations of the line of inter-
section of the following planes.

a. 2x−3y+2z = 5 and x+2y− z = 4.

b. 3x+ y−2z = 1 and x+ y+ z = 5.

Exercise 4.2.20 In each case, find all points of intersec-
tion of the given plane and the line


x

y

z


=




1
−2

3


+ t




2
5
−1


.

x−3y+2z = 4a. 2x− y− z = 5b.

3x− y+ z = 8c. −x−4y−3z = 6d.
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Exercise 4.2.21 Find the equation of all planes:

a. Perpendicular to the line


x

y

z


=




2
−1

3


+ t




2
1
3


.

b. Perpendicular to the line


x

y

z


=




1
0
−1


+ t




3
0
2


.

c. Containing the origin.

d. Containing P(3, 2, −4).

e. Containing P(1, 1, −1) and Q(0, 1, 1).

f. Containing P(2, −1, 1) and Q(1, 0, 0).

g. Containing the line


x

y

z


=




2
1
0


+ t




1
−1

0


.

h. Containing the line


x

y

z


=




3
0
2


+ t




1
−2
−1


.

Exercise 4.2.22 If a plane contains two distinct points
P1 and P2, show that it contains every point on the line
through P1 and P2.

Exercise 4.2.23 Find the shortest distance between the
following pairs of parallel lines.

a.




x

y

z


=




2
−1

3


+ t




1
−1

4


 ;




x

y

z


=




1
0
1


+ t




1
−1

4




b.




x

y

z


=




3
0
2


+ t




3
1
0


 ;




x

y

z


=



−1

2
2


+ t




3
1
0




Exercise 4.2.24 Find the shortest distance between the
following pairs of nonparallel lines and find the points on
the lines that are closest together.

a.




x

y

z


=




3
0
1


+ s




2
1
−3


 ;




x

y

z


=




1
1
−1


+ t




1
0
1




b.




x

y

z


=




1
−1

0


+ s




1
1
1


 ;




x

y

z


=




2
−1

3


+ t




3
1
0




c.




x

y

z


=




3
1
−1


+ s




1
1
−1


 ;




x

y

z


=




1
2
0


+ t




1
0
2




d.




x

y

z


=




1
2
3


+ s




2
0
−1


 ;




x

y

z


=




3
−1

0


+ t




1
1
0




Exercise 4.2.25 Show that two lines in the plane with
slopes m1 and m2 are perpendicular if and only if
m1m2 =−1. [Hint: Example 4.1.11.]

Exercise 4.2.26

a. Show that, of the four diagonals of a cube, no pair
is perpendicular.

b. Show that each diagonal is perpendicular to the
face diagonals it does not meet.

Exercise 4.2.27 Given a rectangular solid with sides of
lengths 1, 1, and

√
2, find the angle between a diagonal

and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with sides
of lengths a, b, and c. Show that it has two orthogonal
diagonals if and only if the sum of two of a2, b2, and c2

equals the third.

Exercise 4.2.29 Let A, B, and C(2, −1, 1) be the ver-

tices of a triangle where
−→
AB is parallel to




1
−1

1


,
−→
AC is
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parallel to




2
0
−1


, and angle C = 90◦ . Find the equa-

tion of the line through B and C.

Exercise 4.2.30 If the diagonals of a parallelogram have
equal length, show that the parallelogram is a rectangle.

Exercise 4.2.31 Given v =




x

y

z


 in component form,

show that the projections of v on i, j, and k are xi, yj, and
zk, respectively.

Exercise 4.2.32

a. Can u · v = −7 if ‖u‖ = 3 and ‖v‖ = 2? Defend
your answer.

b. Find u · v if u =




2
−1

2


, ‖v‖ = 6, and the angle

between u and v is 2π
3 .

Exercise 4.2.33 Show (u+ v) · (u− v) = ‖u‖2−‖v‖2

for any vectors u and v.

Exercise 4.2.34

a. Show ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) for
any vectors u and v.

b. What does this say about parallelograms?

Exercise 4.2.35 Show that if the diagonals of a paral-
lelogram are perpendicular, it is necessarily a rhombus.
[Hint: Example 4.2.5.]

Exercise 4.2.36 Let A and B be the end points of a di-
ameter of a circle (see the diagram). If C is any point on
the circle, show that AC and BC are perpendicular. [Hint:
Express

−→
AB · (−→AB×−→AC) = 0 and

−→
BC in terms of u =

−→
OA

and v =
−→
OC, where O is the centre.]

O
A B

C

Exercise 4.2.37 Show that u and v are orthogonal, if
and only if ‖u+v‖2 = ‖u‖2 +‖v‖2.

Exercise 4.2.38 Let u, v, and w be pairwise orthogonal
vectors.

a. Show that ‖u+v+w‖2 = ‖u‖2 +‖v‖2 +‖w‖2.

b. If u, v, and w are all the same length, show that
they all make the same angle with u+v+w.

Exercise 4.2.39

a. Show that n =

[
a

b

]
is orthogonal to every vector

along the line ax+by+ c = 0.

b. Show that the shortest distance from P0(x0, y0) to
the line is |ax0+by0+c|√

a2+b2 .

[Hint: If P1 is on the line, project u =
−→
P1P0 on n.]

Exercise 4.2.40 Assume u and v are nonzero vectors
that are not parallel. Show that w = ‖u‖v + ‖v‖u is a
nonzero vector that bisects the angle between u and v.

Exercise 4.2.41 Let α , β , and γ be the angles a vector
v 6= 0 makes with the positive x, y, and z axes, respec-
tively. Then cosα , cos β , and cosγ are called the direc-

tion cosines of the vector v.

a. If v =




a

b

c


, show that cos α = a

‖v‖ , cosβ = b
‖v‖ ,

and cos γ = c
‖v‖ .

b. Show that cos2 α + cos2 β + cos2 γ = 1.

Exercise 4.2.42 Let v 6= 0 be any nonzero vector and
suppose that a vector u can be written as u= p+q, where
p is parallel to v and q is orthogonal to v. Show that p

must equal the projection of u on v. [Hint: Argue as in
the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let v 6= 0 be a nonzero vector and let
a 6= 0 be a scalar. If u is any vector, show that the projec-
tion of u on v equals the projection of u on av.

Exercise 4.2.44

a. Show that the Cauchy-Schwarz inequality |u ·
v| ≤ ‖u‖‖v‖ holds for all vectors u and v. [Hint:
|cos θ | ≤ 1 for all angles θ .]
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b. Show that |u · v| = ‖u‖‖v‖ if and only if u and v

are parallel.

[Hint: When is cosθ =±1?]

c. Show that |x1x2 + y1y2 + z1z2|
≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2

holds for all numbers x1, x2, y1, y2, z1, and z2.

d. Show that |xy+ yz+ zx| ≤ x2 + y2 + z2 for all x, y,
and z.

e. Show that (x+ y+ z)2 ≤ 3(x2 + y2 + z2) holds for
all x, y, and z.

Exercise 4.2.45 Prove that the triangle inequality

‖u+v‖ ≤ ‖u‖+‖v‖ holds for all vectors u and v. [Hint:
Consider the triangle with u and v as two sides.]

4.3 More on the Cross Product

The cross product v×w of two R3-vectors v =




x1

y1

z1


 and w =




x2

y2

z2


 was defined in Section 4.2 where

we observed that it can be best remembered using a determinant:

v×w = det




i x1 x2

j y1 y2

k z1 z2


=

∣∣∣∣
y1 y2

z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2

y1 y2

∣∣∣∣k (4.3)

Here i =




1
0
0


, j =




0
1
0


, and k =




1
0
0


 are the coordinate vectors, and the determinant is expanded

along the first column. We observed (but did not prove) in Theorem 4.2.5 that v×w is orthogonal to both
v and w. This follows easily from the next result.

Theorem 4.3.1

If u =




x0

y0

z0


, v =




x1

y1

z1


, and w =




x2

y2

z2


, then u · (v×w) = det




x0 x1 x2

y0 y1 y2

z0 z1 z2


.

Proof. Recall that u · (v×w) is computed by multiplying corresponding components of u and v×w and
then adding. Using equation (4.3), the result is:

u · (v×w) = x0

(∣∣∣∣
y1 y2

z1 z2

∣∣∣∣
)
+ y0

(
−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣
)
+ z0

(∣∣∣∣
x1 x2

y1 y2

∣∣∣∣
)
= det




x0 x1 x2

y0 y1 y2

z0 z1 z2




where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors in R3,
then

u · (v×w) = det
[

u v w
]


